Monatshefte für Chemie 119, 553-562 (1988)

Synthesis, Characterization and Reactions of 2,2,2-Trichloroethoxy Derivatives of Chromium(III)

S. L. Chadha* and Vijay Sharma

Department of Chemistry, Panjab University, Chandigarh-160014, India

(Received 31 March 1987. Accepted 25 June 1987)

Tris(2,2,2-trichloroethoxy)chromium(III) tetrahydrofuran solvate, $Cr(OCH_2 CCl_3)_3 \cdot THF$; Chlorobis(2,2,2-trichloroethoxy)chromium(III)tetrahydrofuran solvate, $CrCl(OCH_2CCl_3)_2 \cdot THF$ and dichloro(2,2,2-trichloroethoxy) chromium(III) tetrahydrofuran solvate, $CrCl_2(OCH_2CCl_3) \cdot THF$ have been prepared. These compounds react with various oxygen and nitrogen donor ligands to form adducts of 1:2 composition. 2,2,2-trichloroethoxy bridged structures have been proposed on the basis of their infrared and ¹H nmr spectra. The diffuse reflectance spectral results are consistent with an octahedral geometry for chromium(III) whereas their low magnetic moment values suggest polymeric structures exhibiting antiferromagnetic coupling between chromium(III) atoms. The mass spectral data of $Cr(OCH_2CCl_3)_3 \cdot THF$ and $CrCl(OCH_2CCl_3)_2 \cdot THF$ support the dimeric structures for these complexes.

(Keywords: 2,2,2-Trichloroethoxy derivatives of chromium(III); Adducts with O- and N-donors)

Synthese, Charakterisierung und Reaktionen von 2,2,2-Trichlorethoxyderivaten von Chrom(III)

Es wurde Tris(2,2,2-trichlorethoxy)chrom(III)-tetrahydrofuransolvat, Chlorbis(2,2,2-trichlorethoxy)chrom(III)tetrahydro- $Cr(OCH_2CCl_3)_3 \cdot THF$, furansolvat, $CrCl(OCH_2CCl_3)_2 \cdot THF$, und Dichlor(2,2,2-trichlorethoxy)-chrom(III)tetrahydrofuransolvat, $CrCl_2(OCH_2CCl_3 \cdot THF$, hergestellt. Diese Verbindungen reagieren mit verschiedenen Sauerstoff- und Stickstoffdonorliganden unter Bildung von Addukten mit der Zusammensetzung 1:2. Basierend auf IR- und ¹H-NMR-Daten wurden 2,2,2-trichlorethoxyüberbrückte Strukturen vorgeschlagen. Die Resultate aus Diffuse-Reflectance-Messungen sind mit einer oktaedrischen Geometrie um Cr(III) in Übereinstimmung, während die niedrigen Werte für die magnetischen Momente polymere Strukturen mit antiferromagnetischer Kopplung zwischen den Chrom(III)-Atomen nahelegen. Die massenspektroskopischen Daten für $Cr(OCH_2CCl_3)_3 \cdot THF$ und $CrCl(OCH_2CCl_3)_2 \cdot THF$ sprechen für eine dimere Struktur dieser Komplexe.

Introduction

Unlike metal alkoxides [1, 2] the corresponding haloalkoxy derivatives are relatively unknown and of these the trichloroethoxy derivatives of chromium(III) had not so far been reported.

The alkoxide group is known to display a great propensity to bridge [3] two or more metal atoms so that the formation of a strong polynuclear molecular cluster dominates the structural chemistry of metal alkoxides [2] and as a consequence leads to the coordination saturation which in turn precludes ligation. The alkoxy ligands containing electronegative atoms are expected to weaken the alkoxy-bridged polymers and increase the sensitivity of the central metal atom to nucleophilic attack and this may enable the strong ligand coordination. Here we report the preparation of hitherto unknown 2,2,2-trichloroethoxy chromium(III) derivatives and their stable adducts with ligands.

Results and Discussion

Tris(2,2,2-trichloroethoxy)chromium(III)tetrahydrofuran solvate. $Cr(OCH_2CCl_3)_3 \cdot THF$, chlorobis(2,2,2-trichloroethoxy)chromium(III)tetrahydrofuran solvate, CrCl(OCH₂CCl₃)₂ · THF and dichloro(2,2,2trichloroethoxy)chromium(III)tetrahydrofuran solvate, CrCl₂(OCH₂) CCl_3) · THF have been prepared from their reaction of anhydrous chromium(III)chloride in tetrahydrofuran and LiOCH2CCl3 in 1:3. 1:2 and 1:1 molar ratio respectively. An attempted reaction of $Cr(OCH_2CCl_3)_3 \cdot THF$ with 2 moles of acetylchloride to obtain the dichloro derivative yields a dark green liquid containing two moles of the corresponding ester molecules and was found on analysis to be $CrCl_2(OCH_2CCl_3) \cdot 2CH_3COOCH_2CCl_3$ [$\nu(C=O)$ of coordinated ester 1605 cm⁻¹]. These 2,2,2-trichloroethoxy derivatives of chromium(III) are insoluble in common organic solvents such as CCl₄, CH₂Cl₂, C₆H₆, C₆H₅NO₂, CH₃NO₂, and CH₃CN which indicates that they are polymeric. Their insolubility also precludes conductance and cryoscopic measurements.

The infrared spectrum of $Cr(OCH_2CCl_3)_3 \cdot THF$ exhibits C—O stretching modes at 1 090, 1 015 cm⁻¹ (Table 2) which may be assigned to the terminal and bridging alkoxy group, respectively [4, 5]. Likewise, $CrCl(OCH_2CCl_3)_2 \cdot THF$ exhibits these bands at 1 085 and 1 010 cm⁻¹. In addition, these compounds show bands due to coordinated tetrahydrofuran molecules at 1 030, 900 cm⁻¹ and 1 020, 915 cm⁻¹ assigned to the symmetric and asymmetric C—O—C stretching vibrations [6]. The spectra of these derivatives also show bands at 510, 460 cm⁻¹ and 505, 405 cm⁻¹ arising from the vibrations due to the stretching modes for

Cr—O and Cr—O → Cr respectively and the position and assignments compare well with earlier reported results [7]. The infrared spectrum of CrCl₂(OCH₂CCl₃) · *THF* shows only one band in the C—O region at 1 030 cm⁻¹ and this may be assigned to the bridging C—O vibration only, whereas the band at 460 cm⁻¹ may be assigned to the presence of $v(Cr \sim O \simeq Cr)$. This clearly indicates that all these derivatives contain bridging 2,2,2-trichloroethoxy, and the terminal 2,2,2-trichloroethoxy group, which is present in others, seems to be absent in CrCl₂(OCH₂CCl₃) · *THF*.

The compounds are paramagnetic and their magnetic moments fall in the range 3.28–3.60 B.M. at room temperature (Table 1). The observed values are significantly below the spin-only value of 3.88 B.M. for chromium(III) [8] suggesting the existence of antiferromagnetic interactions between two or more chromium(III) atoms through the bridging —OCH₂CCl₃ groups. The increase in the magnetic moment on replacement of —OCH₂CCl₃ by Cl atoms may be due to the decrease in the extent of antiferromagnetic interactions; a similar behaviour has earlier been observed for corresponding methoxy derivatives [8].

The diffuse reflectance spectra of these compounds show bands around 16.0 kK, 25.0 kK, and 33.0 kK (Table 3) assigned to ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}(F)(v_1)$, ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(F)(v_2)$ and ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(P)(v_3)$ transitions, respectively. These spectra are identical in all respects to the reported spectra of chromium(III) in octahedral environment [9, 10]. The various electronic parameters such as ligand field parameter (10 Dq); *Recah* parameter (B) and the covalency factor (β) (Table 3) have been calculated by the method reported by *Konig* [11]. The values of 'B' and ' β ' are indicative of the highly covalent character of the metal ligand bonds in these derivatives [12, 13].

The ¹H nmr spectrum of Cr(OCH₂CCl₃)₃ · *THF* in pyridine shows a broad singlet at $\delta = 4.8$ ppm (width at half height = 28 Hz) due to --CH₂ of the --OCH₂CCl₃ group [14] in addition to singlets at $\delta = 2.0$ ppm and $\delta = 3.9$ ppm due to --CH₂ of tetrahydrofuran. The integration ratio of 1.5: 2 supports the existence of 1: 1 composition. The ¹H nmr spectrum of CrCl(OCH₂CCl₂)₂ · *THF* shows a broad singlet at $\delta = 5.2$ ppm (width at half height = 30 Hz) attributed to --CH₂ of tetrahydrofuran. The existence of only one --CH₂ signal for both terminal and bridging --OCH₂CCl₃ groups may be explained on the basis of formation of pyridine adducts with these derivatives and these pyridine adducts may be monomeric in pyridine (pyridine signals are observed at $\delta = 7.3$, 7.6 and 8.3 in 2:1:2 ratio).

The mass spectra of $Cr(OCH_2CCl_3)_3 \cdot THF$ and CrCl(O

Table 1. Analytical data and magnetic m	noments (B.M.) of	f 2,2,2-tri	chloroethoxy d	erivatives of chrom	ium(III) and their adducts
Compound	Colour and state	M.P. (°C)	Magnetic moment, $\mu^{eff.}$ (B.M.)	Cr(%) Exp. (calcd.)	Cl(%) Exp. (calcd.)
Cr(OCH ₂ CCl ₃) ₃ · THF	dark green viscous liquid	1	3.28	9.0 (9.1)	55.7 (56.1)
Cr(OCH2CCl ₃) ₃ · 2 <i>TMU</i>	green solid	8	3.51	7.0(7.1)	43.4 (43.7)
Cr(OCH ₂ CCl ₃) ₃ · 2 DMA	dark green solid	s	ļ	7.4 <i>(</i> 7.7) 25.6(25.0) ^b	47.0(47.5) 3.6(3.57) ^d 4.0(4.1) ^c
Cr(OCH ₂ CCl ₃) ₃ · 2 α-pic—N—O	light green solid	5	1	6.9(7.2) $30.9(30.1)^{b}$	44.0(44.6) $2.8(2.79)^{d}$ $3.7(3.9)^{c}$
Cr(OCH ₂ CCl ₃) ₃ · 2 <i>γ-pic</i> —N—O	light green solid	ব্য		7.0(7.2) 29.6(30.1) ^b	44.4(44.6) 3.7(3.91)

S. L. Chadha and V. Sharma:

CrCl(OCH2CCl ₃)2· <i>THF</i>	green viscous liquid	ļ	3.47	11.2(11.3)	54.3 (54.4)
CrCl(OCH ₂ CCl ₃) ₂ ·2 <i>γ-pic</i> —N—O	green solid	130°	3.58	8.4(8.6) $30.6(31.6)^{\rm b}$	40.6 (41.2) 3.2 (2.98) ^d 4.0 (4.64) [°]
CrCl ₂ (OCH ₂ CCl ₃) · THF	violet solid	æ	3.54	14.5(15.1) $21.5(20.9)^{b}$	51.0(51.6) $3.0(2.9)^{d}$
CrCl ₂ (OCH ₂ CCl ₃) · 2 CH ₃ COOCH ₂ CCl ₃	green liquid			7.8(7.9)	59.4 (59.6)
CrCl ₂ (OCH ₂ CCl ₃) · 2 DMA	green solid	æ	3.60	11.7(11.6) 26.0(26.9) ^b	39.5(39.8) $5.0(4.48)^{d}$ $6.8(6.2)^{c}$
CrCl ₂ (OCH ₂ CCl ₃) · 2 NMA	green solid	ra	[12.2(12.4) 23.2(22.9) ^b	$\frac{41.8}{4.2} \frac{(42.2)}{7.0} \frac{1}{(6.7)^{\circ}}$
CrCl ₂ (OCH ₂ CCl ₃) · 2 <i>γ-pic</i> —N—O	green solid	140°	ļ	10.8(10.6) 32.5 (34.3) ^b	35.9(36.2) 3.1(3.2) ^d 4.8(5.7) ^c
CrCl₂(OCH₂CCl₃) · 2 <i>γ-pic</i>	dark green solid	155°		11.2(11.3)	38.5 (38.7)

lydrogen %. ° Decomposed	
نىلىز 	
, о	
~ ~	
Nitroger	
S	
%.	
uc	
urb	
Ű	
۹.	
ô	
560	
g	
ц,	
ltτ	
me	
lot	
գո	
Ā	
ವ	

udducts
their a
and
(III)
hromium
f_{c}
erivatives .
v de
loroethox
ich
2-11
N
S.
frequencies of
al,
d spectr
Infrare
Table 2.

558

Compound	$ \begin{array}{l} \nu(\mathrm{C-O-C})_{\mathrm{sym}}^{\mathrm{am}}; \nu(\mathrm{C-O-C})_{\mathrm{asym}}^{\mathrm{am}}; \\ \nu(\mathrm{C=O})^{\mathrm{b}}; \nu(\mathrm{N-O})^{\mathrm{c}} \\ \nu(\mathrm{C=C}) \text{ and } \nu(\mathrm{C=N})^{\mathrm{d}} \end{array} $	$\nu(CO)_{\text{bridging}}$	v(CO) _{terminal}	ν(CrΟ) γ	(Cr ightarrow Cr)
$Cr(OCH_2CCl_3)_3 \cdot THF$	1030, 900 (1070, 910) ^a	1015	1 090	510	460
CrCl(OCH2CCl3)2 · THF	1020, 915 (1070, 910) ^a	1 010	1 085	505	450
CrCl ₂ (OCH ₂ CCl ₃) · THF	1020, 900 (1070, 915) ^a	1 030	ļ		445
CrCl ₂ (OCH ₂ CCl ₃) · 2 CH ₃ COOCH ₂ CCl ₃	1 605	1 030			
Cr(OCH ₂ CCl ₃) ₃ , 2 DMA	1 600 (1 653) ^b	1 010	1 080		ļ
Cr(OCH ₂ CCl ₃) ₃ ·2 <i>TMU</i>	1600 (1650) ^b	1030	1 090	ļ	1
Cr(OCH ₂ CCl ₃) ₃ · 2 <i>α-pic</i> —N—O	1 210 (1 245) [¢]	1 020	1 080	500	440
Cr(OCH ₂ CCl ₃) ₃ ·2 <i>γ-pic</i> —N—O	1 230 (1 255)°	1 035	1 090	510	465
CrCl(OCH2CCl ₃) ₂ · 2 <i>γ-pic</i> —N—O	1 230 (1 255)°	1 040	1 080	570	520
CrCl ₂ (OCH ₂ CCl ₃) · 2 DMA	1 620 (1 653) ^a	1 025		I	470
CrCl ₂ (OCH ₂ CCl ₃) · 2 NMA	1 600 (1 620) ^a	1 040		1	465
CrCl ₂ (OCH ₂ CCl ₃) · 2 γ- <i>pic</i> —N—O	1200 (1255) ^c	1 040		ł	460
CrCl ₂ (OCH ₂ CCl ₃) · 2 <i>γ-pic</i>	1 620, 1 580 (1 595, 1 550, 1 490, 1 460) ^d	1 035	ļ		475

The values given in the parenthesis are the corresponding free ligand vibrations (cm⁻¹) ^a Did not melt up to 260°C. ^b Carbon %. ^c Nitrogen %. ^d Hydrogen %

S. L. Chadha and V. Sharma:

Table 3. Electronic spectral date	ı of chromium(III) alkoɔ	xides and their adducts	with some oxygen and n	iitrogen (lonor lig	spu
Compound	$\begin{array}{c} {}^{4}\!A_{2g}(F) \rightarrow {}^{4}\!T_{2g}(F)(\nu_{1}) \\ (kK) \end{array}$	$ {}^{4}\!A_{2g}(F) {}^{4}\!T_{1g}(F)(\nu_{2}) \\ (kK) $	$ \begin{array}{c} {}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(P)(\nu_{3}) \\ (kK) \end{array} $	10 Dq (kK)	B (kK)	β
		0.30	33 0	16.6	7750	0 5 0
	10.0	0.02	0.00	10.01	0.040	vv
CrĊl(OĆH,CŐĬ,),· THF	16.0	25.2	33.2	16.0	0.693	0.75
CrCl,(OCH,CCl,) THF	16.4	25.0	34.0	16.4	0.653	0.71
Cr(OČH, CČl,), Ž TMU	16.5	24.8	33.6	16.5	0.593	0.65
Cr(OCH,CCI,), 2 DMA	15.6	25.2	32.0	15.6	0.653	0.71
$Cr(OCH^{2}, CCI_{1})^{2} \cdot 2 \alpha - pic - N - O$	16.0	24.8	32.0	16.0	0.586	0.63
CrČl(OČH,CČĺ,), · 2 ['] y- <i>pic</i> —N—O	15.6	24.3	32.6	15.6	0.686	0.74
CrCl ₃ (OCH ₃ ,CCl ₃) · 2 <i>DMA</i>	15.3	23.8	31.0	15.3	0.593	0.64
CrCl,(OCH,CCl,) · 2 NMA	14.9	23.5	30.5	14.9	0.620	0.67
$CrCl_2(OCH_2CCl_3) \cdot 2 \gamma - pic$	15.6	23.2	32.0	15.6	0.56	0.61

lonor
gen c
nitro
n and
луден
o au
th so
ts wi
adduc
their
and
lkoxides
III) a
romium(.
of cl
data
spectral
Electronic
Table 3.

m/e (Peak position) ^a	Possible assignment
	СН
430 w	$\begin{bmatrix} Cl_{3}CH_{2}CO - Cr - O - Cr - OCH_{2}CCl_{3} \end{bmatrix}^{+}$ $\downarrow -2 HCl$ CH
357 w	$\begin{bmatrix} Cl_2HCO - Cr - O - Cr - OCHCCl_2 \end{bmatrix}^+ \downarrow - C_2HCl CH$
297 m	[Cl ₂ CHCOCrOci] ⁺
281 s	$\begin{bmatrix} CH \\ \downarrow \\ -C_2CHCO - Cr - O - Cr - Cl \end{bmatrix}^+ \\ \downarrow - C_2HCl \\ CH \\ \downarrow - C_2HCl \\ CH \\ \downarrow - C_2HCl \\ \downarrow - Cl \\ \downarrow - Cl$
220 m	$[ClO-Cr-O-Cr-Cl]^+$
207 1116	
191 c	$[CI_{-}Cr_{-}O_{-}Cr_{-}CI]^{+}$
168	
148 5 8	OCH_CCI
133 s	
119 m	-CCl ₂
72 vs	THF

Table 4. m/e Peak positions in Cr(OCH₂CCl₃)₃ · THF and CrCl(OCH₂CCl₃)₂ · THF

^a The peaks in both of them appear at the same position

 $CH_2CCl_3)_2 \cdot THF$ do not exhibit m/e peaks for the ions corresponding to the theoretical value for the dimer or monomeric species. However, the strong m/e peaks each corresponding to possible mass distribution of dichromium ion has been observed in both of them (Table 4). The strong peak at 191 mass units corresponds to Cl—Cr—O—Cr—Cl. On this basis the strong peaks at m/e 207, 220, 281, 297, 357 and 430 may be assigned to other dichromium species. In view of these observations, the dimeric structures for these derivatives may be proposed in vapour phase.

These 2,2,2-trichloroethoxy derivatives react with some oxygen and nitrogen donor ligands such as tetramethylurea (TMU), dimethylacet-

amide (*DMA*), *n*-methylacetamide (*NMA*), α -, γ -picoline-N-oxide (α -, γ -pic-N-O) and γ -picoline (γ -pic) to yield adducts having 1 : 2 stoichiometry (Table 1) and the variation in the composition of reacting species did not alter the stoichiometry of the adducts. These adducts show similar spectral and magnetic susceptibility features as have been observed in the corresponding 2,2,2-trichloroethoxy derivatives. The ligand vibrations, however, undergo changes on complexation and such changes are similar to those reported for the complexes of these ligands with metal halides [15–18]. This confirms the coordination of the ligands to the 2,2,2-trichloroethoxy derivatives of chromium(III).

Acknowledgement

The authors thank the C.S.I.R., New Delhi, for financial help.

Experimental

All the reactions have been done on vacuum line or under dry oxygen free nitrogen. $LiOCH_2CCl_3$ was prepared by a method outlined in our earlier paper [5].

$Cr(OCH_2CCl_3)_3 \cdot THF$

Anhydrous chromium(III) chloride (22.1 mmol, 3.5 g) in 50 ml of tetrahydrofuran was added dropwise to LiOCH₂CCl₃ (66.3 mmol, 10.3 g). The contents were stirred and refluxed on a waterbath for 3–4 h. Dry diethylether (100 ml) was added to separate solid LiCl from soluble Cr(OCH₂CCl₃)₃. The reaction mixture was filtered under anhydrous conditions and the filtrate on vacuum drying yielded the dark green viscous compound.

$CrCl(OCH_2CCl_3)_2 \cdot THF$

This was prepared under similar conditions as above except that the amount of $LiOCH_2CCl_3$ was 44.2 mmol, 6.86 g. The contents were refluxed on a waterbath for 8–9 h and processed as described above to yield the green viscous liquid product.

$CrCl_2(OCH_2CCl_3) \cdot THF$

Reaction of anhydrous chromium(III) chloride (28.4 mmol, 4.5 g) in 20 ml tetrahydrofuran was reacted with 28.4 mmol, 4.4 g of $LiOCH_2CCl_3$ under the conditions as above but refluxing the contents on a waterbath for a prolonged period (~15 h), yielding the violet solid compound.

Preparation of Adducts with Ligands

The above alkoxides were dissolved in various ligands in 1:2 molar ratio and the contents were stirred for 3-4 h. Green coloured adducts were precipitated by addition of ether/petroleum ether/methylene chloride.

Chromium was estimated volumetrically [19] and chlorine was estimated gravimetrically [20]. Other experimental details for spectral recordings are the same as described earlier [5].

562 S. L. Chadha and V. Sharma: 2,2,2-Trichloroethoxy Derivatives of Cr(III)

References

- [1] Bradley DC, Mehrotra RC, Gaur DP (1976) Metal alkoxides. Academic Press, New York
- [2] Bradley DC, Fischer KJ (1972) M.T.P. Int Rev Sci Gen Chem Trans Metals 5: 65
- [3] Cavell KJ, Connor JA, Pilcher G, Riberio de Silva MA, Riberio de Silva MDMC, Skinner HA, Virmani Y, Zafran-Moattar MT (1981) J Chem Soc Faraday Trans 77: 1585
- [4] Chadha SL, Sharma V, Jaswal CM, Taneja SP, Raj D (1986) Z Anorg Allg Chem 536: 164
- [5] Chadha SL, Sharma V (1987) Z Anorg Allg Chem 545: 227
- [6] Bagnall KW, Beheshti A, Heatley F (1978) J Less Common Met 61: 63-69
- [7] Adams RW, Martin RL, Winter G (1967) Aust J Chem 20: 773
- [8] Dubicki L, Kakos GA, Winter G (1968) Aust J Chem 21: 1461
- [9] Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier, Amsterdam
- [10] Agarwal SK, Mehrotra RC (1986) Inorg Chim Acta 112: 177
- [11] König E (1971) The nephalauxetic effect. In: Hemmerich P, Jørgensen CK, Neilands JB, Nyholm Sir RS, Reiner D, Williams RJP (eds) Structure and bonding. Springer-Verlag, Berlin Heidelberg New York, p9
- [12] Figgis BN (1976) Introduction to ligand fields. Wiley, Delhi
- [13] Jørgensen CK (1962) Prog Inorg Chem 4: 73
- [14] Chadha SL, Sharma V, Sharma A (1987) J Chem Soc Dalton Trans 1253
- [15] Aggarwal RC, Singh PP (1964) J Inorg Nucl Chem 26: 2185
- [16] Kida S, Quagliano JV, Tyree SY (1963) Spectrochim Acta 19: 189
- [17] McGregor WR, Bridgland BE (1969) J Inorg Nucl Chem 31: 3325
- [18] Kakiuchi Y, Kida S, Quagliano J (1963) Spectrochim Acta 19: 201
- [19] Sharma V (1986) Preparation, characterization and reactions of 2,2,2trichloroethoxides of some transition metals. Ph.D. thesis, Panjab University, Chandigarh
- [20] Vogel AI (1961) A textbook of inorganic quantitative analysis. Longman Green, London